Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting

The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-the-art operational ROVER algorithm for precipitation nowcasting.

PDF Abstract NeurIPS 2015 PDF NeurIPS 2015 Abstract

Results from the Paper

 Ranked #1 on Video Prediction on KTH (Cond metric)

     Get a GitHub badge

Results from Other Papers

Task Dataset Model Metric Name Metric Value Rank Source Paper Compare
Video Prediction KTH ConvLSTM LPIPS 0.231 # 14
PSNR 23.58 # 30
SSIM 0.712 # 29
Cond 10 # 1
Pred 20 # 1
Video Prediction Moving MNIST ConvLSTM MSE 103.3 # 15
MAE 182.9 # 8
SSIM 0.707 # 15