Cross-domain Aspect Category Transfer and Detection via Traceable Heterogeneous Graph Representation Learning

30 Aug 2019  ·  Zhuoren Jiang, Jian Wang, Lujun Zhao, Changlong Sun, Yao Lu, Xiaozhong Liu ·

Aspect category detection is an essential task for sentiment analysis and opinion mining. However, the cost of categorical data labeling, e.g., label the review aspect information for a large number of product domains, can be inevitable but unaffordable... In this study, we propose a novel problem, cross-domain aspect category transfer and detection, which faces three challenges: various feature spaces, different data distributions, and diverse output spaces. To address these problems, we propose an innovative solution, Traceable Heterogeneous Graph Representation Learning (THGRL). Unlike prior text-based aspect detection works, THGRL explores latent domain aspect category connections via massive user behavior information on a heterogeneous graph. Moreover, an innovative latent variable "Walker Tracer" is introduced to characterize the global semantic/aspect dependencies and capture the informative vertexes on the random walk paths. By using THGRL, we project different domains' feature spaces into a common one, while allowing data distributions and output spaces stay differently. Experiment results show that the proposed method outperforms a series of state-of-the-art baseline models. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here