Deep Learning for Patient-Specific Kidney Graft Survival Analysis

29 May 2017  ·  Margaux Luck, Tristan Sylvain, Héloïse Cardinal, Andrea Lodi, Yoshua Bengio ·

An accurate model of patient-specific kidney graft survival distributions can help to improve shared-decision making in the treatment and care of patients. In this paper, we propose a deep learning method that directly models the survival function instead of estimating the hazard function to predict survival times for graft patients based on the principle of multi-task learning. By learning to jointly predict the time of the event, and its rank in the cox partial log likelihood framework, our deep learning approach outperforms, in terms of survival time prediction quality and concordance index, other common methods for survival analysis, including the Cox Proportional Hazards model and a network trained on the cox partial log-likelihood.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here