Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation

20 Jul 2016  ·  Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, Nassir Navab ·

We present a 3D object detection method that uses regressed descriptors of locally-sampled RGB-D patches for 6D vote casting. For regression, we employ a convolutional auto-encoder that has been trained on a large collection of random local patches. During testing, scene patch descriptors are matched against a database of synthetic model view patches and cast 6D object votes which are subsequently filtered to refined hypotheses. We evaluate on three datasets to show that our method generalizes well to previously unseen input data, delivers robust detection results that compete with and surpass the state-of-the-art while being scalable in the number of objects.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here