Deep metric learning for multi-labelled radiographs

11 Dec 2017  ·  Mauro Annarumma, Giovanni Montana ·

Many radiological studies can reveal the presence of several co-existing abnormalities, each one represented by a distinct visual pattern. In this article we address the problem of learning a distance metric for plain radiographs that captures a notion of "radiological similarity": two chest radiographs are considered to be similar if they share similar abnormalities. Deep convolutional neural networks (DCNs) are used to learn a low-dimensional embedding for the radiographs that is equipped with the desired metric. Two loss functions are proposed to deal with multi-labelled images and potentially noisy labels. We report on a large-scale study involving over 745,000 chest radiographs whose labels were automatically extracted from free-text radiological reports through a natural language processing system. Using 4,500 validated exams, we demonstrate that the methodology performs satisfactorily on clustering and image retrieval tasks. Remarkably, the learned metric separates normal exams from those having radiological abnormalities.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here