Deep Visual Domain Adaptation: A Survey

10 Feb 2018 Mei Wang Weihong Deng

Deep domain adaption has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaption methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet