Direct Photometric Alignment by Mesh Deformation

The choice of motion models is vital in applications like image/video stitching and video stabilization. Conventional methods explored different approaches ranging from simple global parametric models to complex per-pixel optical flow. Mesh-based warping methods achieve a good balance between computational complexity and model flexibility. However, they typically require high quality feature correspondences and suffer from mismatches and low-textured image content. In this paper, we propose a mesh-based photometric alignment method that minimizes pixel intensity difference instead of Euclidean distance of known feature correspondences. The proposed method combines the superior performance of dense photometric alignment with the efficiency of mesh-based image warping. It achieves better global alignment quality than the feature-based counterpart in textured images, and more importantly, it is also robust to low-textured image content. Abundant experiments show that our method can handle a variety of images and videos, and outperforms representative state-of-the-art methods in both image stitching and video stabilization tasks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here