Do Less, Get More: Streaming Submodular Maximization with Subsampling

NeurIPS 2018  ·  Moran Feldman, Amin Karbasi, Ehsan Kazemi ·

In this paper, we develop the first one-pass streaming algorithm for submodular maximization that does not evaluate the entire stream even once. By carefully subsampling each element of data stream, our algorithm enjoys the tightest approximation guarantees in various settings while having the smallest memory footprint and requiring the lowest number of function evaluations. More specifically, for a monotone submodular function and a $p$-matchoid constraint, our randomized algorithm achieves a $4p$ approximation ratio (in expectation) with $O(k)$ memory and $O(km/p)$ queries per element ($k$ is the size of the largest feasible solution and $m$ is the number of matroids used to define the constraint). For the non-monotone case, our approximation ratio increases only slightly to $4p+2-o(1)$. To the best or our knowledge, our algorithm is the first that combines the benefits of streaming and subsampling in a novel way in order to truly scale submodular maximization to massive machine learning problems. To showcase its practicality, we empirically evaluated the performance of our algorithm on a video summarization application and observed that it outperforms the state-of-the-art algorithm by up to fifty fold, while maintaining practically the same utility.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here