Efficiently Troubleshooting Image Segmentation Models with Human-In-The-Loop

1 Jan 2021  ·  Haotao Wang, Tianlong Chen, Zhangyang Wang, Kede Ma ·

Image segmentation lays the foundation for many high-stakes vision applications such as autonomous driving and medical image analysis. It is, therefore, of great importance to not only improve the accuracy of segmentation models on well-established benchmarks, but also enhance their robustness in the real world so as to avoid sparse but fatal failures. In this paper, instead of chasing state-of-the-art performance on existing benchmarks, we turn our attention to a new challenging problem: how to efficiently expose failures of ``top-performing'' segmentation models in the real world and how to leverage such counterexamples to rectify the models. To achieve this with minimal human labelling effort, we first automatically sample a small set of images that are likely to falsify the target model from a large corpus of web images via the maximum discrepancy competition principle. We then propose a weakly labelling strategy to further reduce the number of false positives, before time-consuming pixel-level labelling by humans. Finally, we fine-tune the model to harness the identified failures, and repeat the whole process, resulting in an efficient and progressive framework for troubleshooting segmentation models. We demonstrate the feasibility of our framework using the semantic segmentation task in PASCAL VOC, and find that the fine-tuned model exhibits significantly improved generalization when applied to real-world images with greater content diversity. All experimental codes will be publicly released upon acceptance.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here