Egocentric Human Segmentation for Mixed Reality

The objective of this work is to segment human body parts from egocentric video using semantic segmentation networks. Our contribution is two-fold: i) we create a semi-synthetic dataset composed of more than 15, 000 realistic images and associated pixel-wise labels of egocentric human body parts, such as arms or legs including different demographic factors; ii) building upon the ThunderNet architecture, we implement a deep learning semantic segmentation algorithm that is able to perform beyond real-time requirements (16 ms for 720 x 720 images). It is believed that this method will enhance sense of presence of Virtual Environments and will constitute a more realistic solution to the standard virtual avatars.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.