Extracting the Subhalo Mass Function from Strong Lens Images with Image Segmentation

14 Sep 2020  ·  Bryan Ostdiek, Ana Diaz Rivero, Cora Dvorkin ·

Detecting substructure within strongly lensed images is a promising route to shed light on the nature of dark matter. However, it is a challenging task, which traditionally requires detailed lens modeling and source reconstruction, taking weeks to analyze each system. We use machine-learning to circumvent the need for lens and source modeling and develop a neural network to both locate subhalos in an image as well as determine their mass using the technique of image segmentation. The network is trained on images with a single subhalo located near the Einstein ring across a wide range of apparent source magnitudes. The network is then able to resolve subhalos with masses $m\gtrsim 10^{8.5} M_{\odot}$. Training in this way allows the network to learn the gravitational lensing of light, and remarkably, it is then able to detect entire populations of substructure, even for locations further away from the Einstein ring than those used in training. Over a wide range of the apparent source magnitude, the false-positive rate is around three false subhalos per 100 images, coming mostly from the lightest detectable subhalo for that signal-to-noise ratio. With good accuracy and a low false-positive rate, counting the number of pixels assigned to each subhalo class over multiple images allows for a measurement of the subhalo mass function (SMF). When measured over three mass bins from $10^9M_{\odot}$--$10^{10} M_{\odot}$ the SMF slope is recovered with an error of 36% for 50 images, and this improves to 10% for 1000 images with Hubble Space Telescope-like noise.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here