Facial Information Recovery from Heavily Damaged Images using Generative Adversarial Network- PART 1

27 Aug 2018  ·  Pushparaja Murugan ·

Over the past decades, a large number of techniques have emerged in modern imaging systems to capture the exact information of the original scene regardless of shake, motion, lighting conditions and etc., These developments have progressively addressed the acquisition of images in high speed and high resolutions. However, the various ineradicable real-time factors cause the degradation of the information and the quality of the acquired images. The available techniques are not intelligent enough to generalize this complex phenomenon. Hence, it is necessary to develop an intellectual framework to recover the possible information presented in the original scene. In this article, we propose a kernel free framework based on conditional-GAN to recover the information from the heavily damaged images. The degradation of images is assumed to be occurred by the combination of a various blur. Learning parameter of the cGAN is optimized by multi-component loss function that includes improved wasserstein loss with regression loss function. The generator module of this network is developed by using U-Net architecture with local Residual connections and global skip connection. Local connections and a global skip connection are implemented for the utilization of all stages of features. Generated images show that the network has the potential to recover the probable information of blurred images from the learned features. This research work is carried out as a part of our IOP studio software 'Facial recognition module'.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods