Graph Metric Learning via Gershgorin Disc Alignment

28 Jan 2020 Cheng Yang Gene Cheung Wei Hu

We propose a fast general projection-free metric learning framework, where the minimization objective $\min_{\textbf{M} \in \mathcal{S}} Q(\textbf{M})$ is a convex differentiable function of the metric matrix $\textbf{M}$, and $\textbf{M}$ resides in the set $\mathcal{S}$ of generalized graph Laplacian matrices for connected graphs with positive edge weights and node degrees. Unlike low-rank metric matrices common in the literature, $\mathcal{S}$ includes the important positive-diagonal-only matrices as a special case in the limit... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet