Generalization Bounds for Convolutional Neural Networks

3 Oct 2019  ·  Shan Lin, Jingwei Zhang ·

Convolutional neural networks (CNNs) have achieved breakthrough performances in a wide range of applications including image classification, semantic segmentation, and object detection. Previous research on characterizing the generalization ability of neural networks mostly focuses on fully connected neural networks (FNNs), regarding CNNs as a special case of FNNs without taking into account the special structure of convolutional layers. In this work, we propose a tighter generalization bound for CNNs by exploiting the sparse and permutation structure of its weight matrices. As the generalization bound relies on the spectral norm of weight matrices, we further study spectral norms of three commonly used convolution operations including standard convolution, depthwise convolution, and pointwise convolution. Theoretical and experimental results both demonstrate that our bounds for CNNs are tighter than existing bounds.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods