Generating and Aligning from Data Geometries with Generative Adversarial Networks

24 Jan 2019  ·  Matthew Amodio, Smita Krishnaswamy ·

Unsupervised domain mapping has attracted substantial attention in recent years due to the success of models based on the cycle-consistency assumption. These models map between two domains by fooling a probabilistic discriminator, thereby matching the probability distributions of the real and generated data. Instead of this probabilistic approach, we cast the problem in terms of aligning the geometry of the manifolds of the two domains. We introduce the Manifold Geometry Matching Generative Adversarial Network (MGM GAN), which adds two novel mechanisms to facilitate GANs sampling from the geometry of the manifold rather than the density and then aligning two manifold geometries: (1) an importance sampling technique that reweights points based on their density on the manifold, making the discriminator only able to discern geometry and (2) a penalty adapted from traditional manifold alignment literature that explicitly enforces the geometry to be preserved. The MGM GAN leverages the manifolds arising from a pre-trained autoencoder to bridge the gap between formal manifold alignment literature and existing GAN work, and demonstrate the advantages of modeling the manifold geometry over its density.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods