Generative Semantic Manipulation with Mask-Contrasting GAN

Despite the promising results on paired/unpaired image-to-image translation achieved by Generative Adversarial Networks (GANs), prior works often only transfer the low-level information (e.g. color or texture changes), but fail to manipulate high-level semantic meanings (e.g., geometric structure or content) of different object regions. On the other hand, while some researches can synthesize compelling real-world images given a class label or caption, they cannot condition on arbitrary shapes or structures, which largely limits their application scenarios and interpretive capability of model results... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Convolution
Convolutions
GAN
Generative Models