Despite the promising results on paired/unpaired image-to-image translation achieved by Generative Adversarial Networks (GANs), prior works often only transfer the low-level information (e.g. color or texture changes), but fail to manipulate high-level semantic meanings (e.g., geometric structure or content) of different object regions. On the other hand, while some researches can synthesize compelling real-world images given a class label or caption, they cannot condition on arbitrary shapes or structures, which largely limits their application scenarios and interpretive capability of model results... (read more)
PDFMETHOD | TYPE | |
---|---|---|
![]() |
Convolutions | |
![]() |
Generative Models |