Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False Positive Rate

1 Aug 2018Sheng ChenJia GuoYang LiuXiang GaoZhen Han

In this paper, we propose a novel Global Norm-Aware Pooling (GNAP) block, which reweights local features in a convolutional neural network (CNN) adaptively according to their L2 norms and outputs a global feature vector with a global average pooling layer. Our GNAP block is designed to give dynamic weights to local features in different spatial positions without losing spatial symmetry... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.