Goal Recognition as Reinforcement Learning

13 Feb 2022  ·  Leonardo Rosa Amado, Reuth Mirsky, Felipe Meneguzzi ·

Most approaches for goal recognition rely on specifications of the possible dynamics of the actor in the environment when pursuing a goal. These specifications suffer from two key issues. First, encoding these dynamics requires careful design by a domain expert, which is often not robust to noise at recognition time. Second, existing approaches often need costly real-time computations to reason about the likelihood of each potential goal. In this paper, we develop a framework that combines model-free reinforcement learning and goal recognition to alleviate the need for careful, manual domain design, and the need for costly online executions. This framework consists of two main stages: Offline learning of policies or utility functions for each potential goal, and online inference. We provide a first instance of this framework using tabular Q-learning for the learning stage, as well as three measures that can be used to perform the inference stage. The resulting instantiation achieves state-of-the-art performance against goal recognizers on standard evaluation domains and superior performance in noisy environments.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods