gradSLAM: Automagically differentiable SLAM

Blending representation learning approaches with simultaneous localization and mapping (SLAM) systems is an open question, because of their highly modular and complex nature. Functionally, SLAM is an operation that transforms raw sensor inputs into a distribution over the state(s) of the robot and the environment... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet