Graph-based Facial Affect Analysis: A Review

29 Mar 2021  ·  Yang Liu, Xingming Zhang, Yante Li, Jinzhao Zhou, Xin Li, Guoying Zhao ·

As one of the most important affective signals, facial affect analysis (FAA) is essential for developing human-computer interaction systems. Early methods focus on extracting appearance and geometry features associated with human affects while ignoring the latent semantic information among individual facial changes, leading to limited performance and generalization. Recent work attempts to establish a graph-based representation to model these semantic relationships and develop frameworks to leverage them for various FAA tasks. This paper provides a comprehensive review of graph-based FAA, including the evolution of algorithms and their applications. First, the FAA background knowledge is introduced, especially on the role of the graph. We then discuss approaches widely used for graph-based affective representation in literature and show a trend towards graph construction. For the relational reasoning in graph-based FAA, existing studies are categorized according to their non-deep or deep learning methods, emphasizing the latest graph neural networks. Performance comparisons of the state-of-the-art graph-based FAA methods are also summarized. Finally, we discuss the challenges and potential directions. As far as we know, this is the first survey of graph-based FAA methods. Our findings can serve as a reference for future research in this field.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here