Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection

14 Mar 2018  ·  Chengyang Li, Dan Song, Ruofeng Tong, Min Tang ·

Multispectral images of color-thermal pairs have shown more effective than a single color channel for pedestrian detection, especially under challenging illumination conditions. However, there is still a lack of studies on how to fuse the two modalities effectively... In this paper, we deeply compare six different convolutional network fusion architectures and analyse their adaptations, enabling a vanilla architecture to obtain detection performances comparable to the state-of-the-art results. Further, we discover that pedestrian detection confidences from color or thermal images are correlated with illumination conditions. With this in mind, we propose an Illumination-aware Faster R-CNN (IAF RCNN). Specifically, an Illumination-aware Network is introduced to give an illumination measure of the input image. Then we adaptively merge color and thermal sub-networks via a gate function defined over the illumination value. The experimental results on KAIST Multispectral Pedestrian Benchmark validate the effectiveness of the proposed IAF R-CNN. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.