Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks

19 May 2020  ·  Linhai Ma, Liang Liang ·

Deep neural networks (DNNs) are vulnerable to adversarial noises. By adding adversarial noises to training samples, adversarial training can improve the model's robustness against adversarial noises. However, adversarial training samples with excessive noises can harm standard accuracy, which may be unacceptable for many medical image analysis applications. This issue has been termed the trade-off between standard accuracy and adversarial robustness. In this paper, we hypothesize that this issue may be alleviated if the adversarial samples for training are placed right on the decision boundaries. Based on this hypothesis, we design an adaptive adversarial training method, named IMA. For each individual training sample, IMA makes a sample-wise estimation of the upper bound of the adversarial perturbation. In the training process, each of the sample-wise adversarial perturbations is gradually increased to match the margin. Once an equilibrium state is reached, the adversarial perturbations will stop increasing. IMA is evaluated on publicly available datasets under two popular adversarial attacks, PGD and IFGSM. The results show that: (1) IMA significantly improves adversarial robustness of DNN classifiers, which achieves state-of-the-art performance; (2) IMA has a minimal reduction in clean accuracy among all competing defense methods; (3) IMA can be applied to pretrained models to reduce time cost; (4) IMA can be applied to the state-of-the-art medical image segmentation networks, with outstanding performance. We hope our work may help to lift the trade-off between adversarial robustness and clean accuracy and facilitate the development of robust applications in the medical field. The source code will be released when this paper is published.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here