Joint Graph-based Depth Refinement and Normal Estimation

CVPR 2020  ·  Mattia Rossi, Mireille El Gheche, Andreas Kuhn, Pascal Frossard ·

Depth estimation is an essential component in understanding the 3D geometry of a scene, with numerous applications in urban and indoor settings. These scenes are characterized by a prevalence of human made structures, which in most of the cases, are either inherently piece-wise planar, or can be approximated as such. In these settings, we devise a novel depth refinement framework that aims at recovering the underlying piece-wise planarity of the inverse depth map. We formulate this task as an optimization problem involving a data fidelity term that minimizes the distance to the input inverse depth map, as well as a regularization that enforces a piece-wise planar solution. As for the regularization term, we model the inverse depth map as a weighted graph between pixels. The proposed regularization is designed to estimate a plane automatically at each pixel, without any need for an a priori estimation of the scene planes, and at the same time it encourages similar pixels to be assigned to the same plane. The resulting optimization problem is efficiently solved with ADAM algorithm. Experiments show that our method leads to a significant improvement in depth refinement, both visually and numerically, with respect to state-of-the-art algorithms on Middlebury, KITTI and ETH3D multi-view stereo datasets.

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.