Koopman-inspired Implicit Backward Reachable Sets for Unknown Nonlinear Systems

12 Jun 2023  ·  Haldun Balim, Antoine Aspeel, Zexiang Liu, Necmiye Ozay ·

Koopman liftings have been successfully used to learn high dimensional linear approximations for autonomous systems for prediction purposes, or for control systems for leveraging linear control techniques to control nonlinear dynamics. In this paper, we show how learned Koopman approximations can be used for state-feedback correct-by-construction control. To this end, we introduce the Koopman over-approximation, a (possibly hybrid) lifted representation that has a simulation-like relation with the underlying dynamics. Then, we prove how successive application of controlled predecessor operation in the lifted space leads to an implicit backward reachable set for the actual dynamics. Finally, we demonstrate the approach on two nonlinear control examples with unknown dynamics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here