Learning to Rank for Active Learning via Multi-Task Bilevel Optimization

25 Oct 2023  ·  Zixin Ding, Si Chen, Ruoxi Jia, Yuxin Chen ·

Active learning is a promising paradigm to reduce the labeling cost by strategically requesting labels to improve model performance. However, existing active learning methods often rely on expensive acquisition function to compute, extensive modeling retraining and multiple rounds of interaction with annotators. To address these limitations, we propose a novel approach for active learning, which aims to select batches of unlabeled instances through a learned surrogate model for data acquisition. A key challenge in this approach is developing an acquisition function that generalizes well, as the history of data, which forms part of the utility function's input, grows over time. Our novel algorithmic contribution is a bilevel multi-task bilevel optimization framework that predicts the relative utility -- measured by the validation accuracy -- of different training sets, and ensures the learned acquisition function generalizes effectively. For cases where validation accuracy is expensive to evaluate, we introduce efficient interpolation-based surrogate models to estimate the utility function, reducing the evaluation cost. We demonstrate the performance of our approach through extensive experiments on standard active classification benchmarks. By employing our learned utility function, we show significant improvements over traditional techniques, paving the way for more efficient and effective utility maximization in active learning applications.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here