Machine Learning in High Energy Physics Community White Paper

8 Jul 2018Kim AlbertssonPiero AltoeDustin AndersonJohn AndersonMichael AndrewsJuan Pedro Araque EspinosaAdam AurisanoLaurent BasaraAdrian BevanWahid BhimjiDaniele BonacorsiBjorn BurklePaolo CalafiuraMario CampanelliLouis CappsFederico CarminatiStefano CarrazzaYi-fan ChenTaylor ChildersYann CoadouElias ConiavitisKyle CranmerClaire DavidDouglas DavisAndrea De SimoneJavier DuarteMartin ErdmannJonas EschleAmir FarbinMatthew FeickertNuno Filipe CastroConor FitzpatrickMichele FlorisAlessandra FortiJordi Garra-TicoJochen GemmlerMaria GironePaul GlaysherSergei GleyzerVladimir GligorovTobias GollingJonas GrawLindsey GrayDick GreenwoodThomas HackerJohn HarveyBenedikt HegnerLukas HeinrichUlrich HeintzBen HoobermanJohannes JunggeburthMichael KaganMeghan KaneKonstantin KanishchevPrzemysław KarpińskiZahari KassabovGaurav KaulDorian KciraThomas KeckAlexei KlimentovJim KowalkowskiLuke KreczkoAlexander KurepinRob KutschkeValentin KuznetsovNicolas KöhlerIgor LakomovKevin LannonMario LassnigAntonio LimosaniGilles LouppeAashrita ManguPere MatoNarain MeenakshiHelge MeinhardDario MenasceLorenzo MonetaSeth MoortgatMark NeubauerHarvey NewmanSydney OttenHans PabstMichela PaganiniManfred PauliniGabriel PerdueUzziel PerezAttilio PicazioJim PivarskiHarrison ProsperFernanda PsihasAlexander RadovicRyan ReeceAurelius RinkeviciusEduardo RodriguesJamal RorieDavid RousseauAaron SauersSteven SchrammAriel SchwartzmanHorst SeveriniPaul SeyfertFilip SirokyKonstantin SkazytkinMike SokoloffGraeme StewartBob StienenIan StockdaleGiles StrongWei SunSavannah ThaisKaren TomkoEli UpfalEmanuele UsaiAndrey UstyuzhaninMartin ValaJustin VaselSofia VallecorsaMauro VerzettiXavier Vilasís-CardonaJean-Roch VlimantIlija VukoticSean-Jiun WangGordon WattsMichael WilliamsWenjing WuStefan WunschKun YangOmar Zapata

Machine learning has been applied to several problems in particle physics research, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas for machine learning in particle physics... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet