MIM-Based Generative Adversarial Networks and Its Application on Anomaly Detection

25 Mar 2020Rui ShePingyi Fan

In terms of Generative Adversarial Networks (GANs), the information metric to discriminate the generative data and the real data, lies in the key point of generation efficiency, which plays an important role in GAN-based applications, especially in anomaly detection. As for the original GAN, the information metric based on Kullback-Leibler (KL) divergence has limitations on rare events generation and training performance for adversarial networks... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper