miniSAM: A Flexible Factor Graph Non-linear Least Squares Optimization Framework

3 Sep 2019  ·  Jing Dong, Zhaoyang Lv ·

Many problems in computer vision and robotics can be phrased as non-linear least squares optimization problems represented by factor graphs, for example, simultaneous localization and mapping (SLAM), structure from motion (SfM), motion planning, and control. We have developed an open-source C++/Python framework miniSAM, for solving such factor graph based least squares problems. Compared to most existing frameworks for least squares solvers, miniSAM has (1) full Python/NumPy API, which enables more agile development and easy binding with existing Python projects, and (2) a wide list of sparse linear solvers, including CUDA enabled sparse linear solvers. Our benchmarking results shows miniSAM offers comparable performances on various types of problems, with more flexible and smoother development experience.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here