Model-free Learning Control of Nonlinear Stochastic Systems with Stability Guarantee

ICLR 2020 Anonymous

Reinforcement learning (RL) offers a principled way to achieve the optimal cumulative performance index in discrete-time nonlinear stochastic systems, which are modeled as Markov decision processes. Its integration with deep learning techniques has promoted the field of deep RL with an impressive performance in complicated continuous control tasks... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet