Multi-Agent Q-Learning for Minimizing Demand-Supply Power Deficit in Microgrids

25 Aug 2017  ·  Raghuram Bharadwaj Diddigi, D. Sai Koti Reddy, Shalabh Bhatnagar ·

We consider the problem of minimizing the difference in the demand and the supply of power using microgrids. We setup multiple microgrids, that provide electricity to a village. They have access to the batteries that can store renewable power and also the electrical lines from the main grid. During each time period, these microgrids need to take decision on the amount of renewable power to be used from the batteries as well as the amount of power needed from the main grid. We formulate this problem in the framework of Markov Decision Process (MDP), similar to the one discussed in [1]. The power allotment to the village from the main grid is fixed and bounded, whereas the renewable energy generation is uncertain in nature. Therefore we adapt a distributed version of the popular Reinforcement learning technique, Multi-Agent Q-Learning to the problem. Finally, we also consider a variant of this problem where the cost of power production at the main site is taken into consideration. In this scenario the microgrids need to minimize the demand-supply deficit, while maintaining the desired average cost of the power production.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods