Mutual information deep regularization for semi-supervised segmentation

The scarcity of labeled data often limits the application of deep learning to medical image segmentation. Semi-supervised learning helps overcome this limitation by leveraging unlabeled images to guide the learning process. In this paper, we propose using a clustering loss based on mutual information that explicitly enforces prediction consistency between nearby pixels in unlabeled images, and for random perturbation of these images, while imposing the network to predict the correct labels for annotated images. Since mutual information does not require a strict ordering of clusters in two different cluster assignments, we propose to incorporate another consistency regularization loss which forces the alignment of class probabilities at each pixel of perturbed unlabeled images. We evaluate the method on three challenging publicly-available medical datasets for image segmentation. Experimental results show our method to outperform recently-proposed approaches for semi-supervised and yield a performance comparable to fully-supervised training.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here