OATM: Occlusion Aware Template Matching by Consensus Set Maximization

We present a novel approach to template matching that is efficient, can handle partial occlusions, and comes with provable performance guarantees. A key component of the method is a reduction that transforms the problem of searching a nearest neighbor among $N$ high-dimensional vectors, to searching neighbors among two sets of order $\sqrt{N}$ vectors, which can be found efficiently using range search techniques... (read more)

PDF Abstract CVPR 2018 PDF CVPR 2018 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet