On the Impact of Applying Machine Learning in the Decision-Making of Self-Adaptive Systems

18 Mar 2021  ·  Omid Gheibi, Danny Weyns, Federico Quin ·

Recently, we have been witnessing an increasing use of machine learning methods in self-adaptive systems. Machine learning methods offer a variety of use cases for supporting self-adaptation, e.g., to keep runtime models up to date, reduce large adaptation spaces, or update adaptation rules. Yet, since machine learning methods apply in essence statistical methods, they may have an impact on the decisions made by a self-adaptive system. Given the wide use of formal approaches to provide guarantees for the decisions made by self-adaptive systems, it is important to investigate the impact of applying machine learning methods when such approaches are used. In this paper, we study one particular instance that combines linear regression to reduce the adaptation space of a self-adaptive system with statistical model checking to analyze the resulting adaptation options. We use computational learning theory to determine a theoretical bound on the impact of the machine learning method on the predictions made by the verifier. We illustrate and evaluate the theoretical result using a scenario of the DeltaIoT artifact. To conclude, we look at opportunities for future research in this area.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods