Optimizing Memory Efficiency for Convolution Kernels on Kepler GPUs

29 May 2017  ·  Xiaoming Chen, Jianxu Chen, Danny Z. Chen, Xiaobo Sharon Hu ·

Convolution is a fundamental operation in many applications, such as computer vision, natural language processing, image processing, etc. Recent successes of convolutional neural networks in various deep learning applications put even higher demand on fast convolution. The high computation throughput and memory bandwidth of graphics processing units (GPUs) make GPUs a natural choice for accelerating convolution operations. However, maximally exploiting the available memory bandwidth of GPUs for convolution is a challenging task. This paper introduces a general model to address the mismatch between the memory bank width of GPUs and computation data width of threads. Based on this model, we develop two convolution kernels, one for the general case and the other for a special case with one input channel. By carefully optimizing memory access patterns and computation patterns, we design a communication-optimized kernel for the special case and a communication-reduced kernel for the general case. Experimental data based on implementations on Kepler GPUs show that our kernels achieve 5.16X and 35.5% average performance improvement over the latest cuDNN library, for the special case and the general case, respectively.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods