Orientation Attentive Robotic Grasp Synthesis with Augmented Grasp Map Representation

9 Jun 2020  ·  Georgia Chalvatzaki, Nikolaos Gkanatsios, Petros Maragos, Jan Peters ·

Inherent morphological characteristics in objects may offer a wide range of plausible grasping orientations that obfuscates the visual learning of robotic grasping. Existing grasp generation approaches are cursed to construct discontinuous grasp maps by aggregating annotations for drastically different orientations per grasping point. Moreover, current methods generate grasp candidates across a single direction in the robot's viewpoint, ignoring its feasibility constraints. In this paper, we propose a novel augmented grasp map representation, suitable for pixel-wise synthesis, that locally disentangles grasping orientations by partitioning the angle space into multiple bins. Furthermore, we introduce the ORientation AtteNtive Grasp synthEsis (ORANGE) framework, that jointly addresses classification into orientation bins and angle-value regression. The bin-wise orientation maps further serve as an attention mechanism for areas with higher graspability, i.e. probability of being an actual grasp point. We report new state-of-the-art 94.71% performance on Jacquard, with a simple U-Net using only depth images, outperforming even multi-modal approaches. Subsequent qualitative results with a real bi-manual robot validate ORANGE's effectiveness in generating grasps for multiple orientations, hence allowing planning grasps that are feasible.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods