Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks

30 Nov 2017  ·  Takuhiro Kaneko, Hirokazu Kameoka ·

We propose a parallel-data-free voice-conversion (VC) method that can learn a mapping from source to target speech without relying on parallel data. The proposed method is general purpose, high quality, and parallel-data free and works without any extra data, modules, or alignment procedure. It also avoids over-smoothing, which occurs in many conventional statistical model-based VC methods. Our method, called CycleGAN-VC, uses a cycle-consistent adversarial network (CycleGAN) with gated convolutional neural networks (CNNs) and an identity-mapping loss. A CycleGAN learns forward and inverse mappings simultaneously using adversarial and cycle-consistency losses. This makes it possible to find an optimal pseudo pair from unpaired data. Furthermore, the adversarial loss contributes to reducing over-smoothing of the converted feature sequence. We configure a CycleGAN with gated CNNs and train it with an identity-mapping loss. This allows the mapping function to capture sequential and hierarchical structures while preserving linguistic information. We evaluated our method on a parallel-data-free VC task. An objective evaluation showed that the converted feature sequence was near natural in terms of global variance and modulation spectra. A subjective evaluation showed that the quality of the converted speech was comparable to that obtained with a Gaussian mixture model-based method under advantageous conditions with parallel and twice the amount of data.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.