PR-MCS: Perturbation Robust Metric for MultiLingual Image Captioning

15 Mar 2023  ·  Yongil Kim, Yerin Hwang, Hyeongu Yun, Seunghyun Yoon, Trung Bui, Kyomin Jung ·

Vulnerability to lexical perturbation is a critical weakness of automatic evaluation metrics for image captioning. This paper proposes Perturbation Robust Multi-Lingual CLIPScore(PR-MCS), which exhibits robustness to such perturbations, as a novel reference-free image captioning metric applicable to multiple languages. To achieve perturbation robustness, we fine-tune the text encoder of CLIP with our language-agnostic method to distinguish the perturbed text from the original text. To verify the robustness of PR-MCS, we introduce a new fine-grained evaluation dataset consisting of detailed captions, critical objects, and the relationships between the objects for 3, 000 images in five languages. In our experiments, PR-MCS significantly outperforms baseline metrics in capturing lexical noise of all various perturbation types in all five languages, proving that PR-MCS is highly robust to lexical perturbations.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods