Privacy-Preserving Joint Edge Association and Power Optimization for the Internet of Vehicles via Federated Multi-Agent Reinforcement Learning

26 Jan 2023  ·  Yan Lin, Jinming Bao, Yijin Zhang, Jun Li, Feng Shu, Lajos Hanzo ·

Proactive edge association is capable of improving wireless connectivity at the cost of increased handover (HO) frequency and energy consumption, while relying on a large amount of private information sharing required for decision making. In order to improve the connectivity-cost trade-off without privacy leakage, we investigate the privacy-preserving joint edge association and power allocation (JEAPA) problem in the face of the environmental uncertainty and the infeasibility of individual learning. Upon modelling the problem by a decentralized partially observable Markov Decision Process (Dec-POMDP), it is solved by federated multi-agent reinforcement learning (FMARL) through only sharing encrypted training data for federatively learning the policy sought. Our simulation results show that the proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here