Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging

Artificial intelligence (AI) models are increasingly used in the medical domain. However, as medical data is highly sensitive, special precautions to ensure its protection are required. The gold standard for privacy preservation is the introduction of differential privacy (DP) to model training. Prior work indicates that DP has negative implications on model accuracy and fairness, which are unacceptable in medicine and represent a main barrier to the widespread use of privacy-preserving techniques. In this work, we evaluated the effect of privacy-preserving training of AI models for chest radiograph diagnosis regarding accuracy and fairness compared to non-private training. For this, we used a large dataset (N=193,311) of high quality clinical chest radiographs, which were retrospectively collected and manually labeled by experienced radiologists. We then compared non-private deep convolutional neural networks (CNNs) and privacy-preserving (DP) models with respect to privacy-utility trade-offs measured as area under the receiver-operator-characteristic curve (AUROC), and privacy-fairness trade-offs, measured as Pearson's r or Statistical Parity Difference. We found that the non-private CNNs achieved an average AUROC score of 0.90 +- 0.04 over all labels, whereas the DP CNNs with a privacy budget of epsilon=7.89 resulted in an AUROC of 0.87 +- 0.04, i.e., a mere 2.6% performance decrease compared to non-private training. Furthermore, we found the privacy-preserving training not to amplify discrimination against age, sex or co-morbidity. Our study shows that -- under the challenging realistic circumstances of a real-life clinical dataset -- the privacy-preserving training of diagnostic deep learning models is possible with excellent diagnostic accuracy and fairness.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here