Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes

17 May 2021  ·  Alexander von Rohr, Matthias Neumann-Brosig, Sebastian Trimpe ·

Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design. While learning-based control has the potential to yield superior performance in demanding applications, robustness to uncertainty remains an important challenge. Since Bayesian methods quantify uncertainty of the learning results, it is natural to incorporate these uncertainties into a robust design. In contrast to most state-of-the-art approaches that consider worst-case estimates, we leverage the learning method's posterior distribution in the controller synthesis. The result is a more informed and, thus, more efficient trade-off between performance and robustness. We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin. The formulation is based on a recently proposed algorithm for linear quadratic control synthesis, which we extend by giving probabilistic robustness guarantees in the form of credibility bounds for the system's stability.Comparisons to existing methods based on worst-case and certainty-equivalence designs reveal superior performance and robustness properties of the proposed method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here