QKSA: Quantum Knowledge Seeking Agent

3 Jul 2021  ·  Aritra Sarkar ·

In this article we present the motivation and the core thesis towards the implementation of a Quantum Knowledge Seeking Agent (QKSA). QKSA is a general reinforcement learning agent that can be used to model classical and quantum dynamics... It merges ideas from universal artificial general intelligence, constructor theory and genetic programming to build a robust and general framework for testing the capabilities of the agent in a variety of environments. It takes the artificial life (or, animat) path to artificial general intelligence where a population of intelligent agents are instantiated to explore valid ways of modelling the perceptions. The multiplicity and survivability of the agents are defined by the fitness, with respect to the explainability and predictability, of a resource-bounded computational model of the environment. This general learning approach is then employed to model the physics of an environment based on subjective observer states of the agents. A specific case of quantum process tomography as a general modelling principle is presented. The various background ideas and a baseline formalism are discussed in this article which sets the groundwork for the implementations of the QKSA that are currently in active development. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here