Rényi Fair Inference

Machine learning algorithms have been increasingly deployed in critical automated decision-making systems that directly affect human lives. When these algorithms are only trained to minimize the training/test error, they could suffer from systematic discrimination against individuals based on their sensitive attributes such as gender or race. Recently, there has been a surge in machine learning society to develop algorithms for fair machine learning. In particular, many adversarial learning procedures have been proposed to impose fairness. Unfortunately, these algorithms either can only impose fairness up to first-order dependence between the variables, or they lack computational convergence guarantees. In this paper, we use R\'enyi correlation as a measure of fairness of machine learning models and develop a general training framework to impose fairness. In particular, we propose a min-max formulation which balances the accuracy and fairness when solved to optimality. For the case of discrete sensitive attributes, we suggest an iterative algorithm with theoretical convergence guarantee for solving the proposed min-max problem. Our algorithm and analysis are then specialized to fair classification and the fair clustering problem under disparate impact doctrine. Finally, the performance of the proposed R\'enyi fair inference framework is evaluated on Adult and Bank datasets.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here