Representational aspects of depth and conditioning in normalizing flows

2 Oct 2020  ·  Frederic Koehler, Viraj Mehta, Andrej Risteski ·

Normalizing flows are among the most popular paradigms in generative modeling, especially for images, primarily because we can efficiently evaluate the likelihood of a data point. This is desirable both for evaluating the fit of a model, and for ease of training, as maximizing the likelihood can be done by gradient descent. However, training normalizing flows comes with difficulties as well: models which produce good samples typically need to be extremely deep -- which comes with accompanying vanishing/exploding gradient problems. A very related problem is that they are often poorly conditioned: since they are parametrized as invertible maps from $\mathbb{R}^d \to \mathbb{R}^d$, and typical training data like images intuitively is lower-dimensional, the learned maps often have Jacobians that are close to being singular. In our paper, we tackle representational aspects around depth and conditioning of normalizing flows: both for general invertible architectures, and for a particular common architecture, affine couplings. We prove that $\Theta(1)$ affine coupling layers suffice to exactly represent a permutation or $1 \times 1$ convolution, as used in GLOW, showing that representationally the choice of partition is not a bottleneck for depth. We also show that shallow affine coupling networks are universal approximators in Wasserstein distance if ill-conditioning is allowed, and experimentally investigate related phenomena involving padding. Finally, we show a depth lower bound for general flow architectures with few neurons per layer and bounded Lipschitz constant.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.