Robust Face Recognition by Constrained Part-based Alignment
Developing a reliable and practical face recognition system is a long-standing goal in computer vision research. Existing literature suggests that pixel-wise face alignment is the key to achieve high-accuracy face recognition. By assuming a human face as piece-wise planar surfaces, where each surface corresponds to a facial part, we develop in this paper a Constrained Part-based Alignment (CPA) algorithm for face recognition across pose and/or expression. Our proposed algorithm is based on a trainable CPA model, which learns appearance evidence of individual parts and a tree-structured shape configuration among different parts. Given a probe face, CPA simultaneously aligns all its parts by fitting them to the appearance evidence with consideration of the constraint from the tree-structured shape configuration. This objective is formulated as a norm minimization problem regularized by graph likelihoods. CPA can be easily integrated with many existing classifiers to perform part-based face recognition. Extensive experiments on benchmark face datasets show that CPA outperforms or is on par with existing methods for robust face recognition across pose, expression, and/or illumination changes.
PDF Abstract