Robust Small Object Detection on the Water Surface Through Fusion of Camera and Millimeter Wave Radar

ICCV 2021  ·  Yuwei Cheng, Hu Xu, Yimin Liu ·

In recent years, unmanned surface vehicles (USVs) have been experiencing growth in various applications. With the expansion of USVs' application scenes from the typical marine areas to inland waters, new challenges arise for the object detection task, which is an essential part of the perception system of USVs. In our work, we focus on a relatively unexplored task for USVs in inland waters: small object detection on water surfaces, which is of vital importance for safe autonomous navigation and USVs' certain missions such as floating waste cleaning. Considering the limitations of vision-based object detection, we propose a novel vision-radar fusion based method for robust small object detection on water surfaces. By using a novel representation format of millimeter wave radar point clouds and applying a deep-level multi-scale fusion of RGB images and radar data, the proposed method can efficiently utilize the characteristics of radar data and improve the accuracy and robustness for small object detection on water surfaces. We test the method on the real-world floating bottle dataset that we collected and released. The result shows that, our method improves the average detection accuracy significantly compared to the vision-based methods and achieves state-of-the-art performance. Besides, the proposed method performs robustly when single sensor degrades.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here