During the SARS-CoV-2 pandemic, wastewater-based genomic surveillance (WWGS) emerged as an efficient viral surveillance tool that takes into account asymptomatic cases and can identify known and novel mutations and offers the opportunity to assign known virus lineages based on the detected mutations profiles. WWGS can also hint towards novel or cryptic lineages, but it is difficult to clearly identify and define novel lineages from wastewater (WW) alone. While WWGS has significant advantages in monitoring SARS-CoV-2 viral spread, technical challenges remain, including poor sequencing coverage and quality due to viral RNA degradation. As a result, the viral RNAs in wastewater have low concentrations and are often fragmented, making sequencing difficult. WWGS analysis requires advanced computational tools that are yet to be developed and benchmarked. The existing bioinformatics tools used to analyze wastewater sequencing data are often based on previously developed methods for quantifying the expression of transcripts or viral diversity. Those methods were not developed for wastewater sequencing data specifically, and are not optimized to address unique challenges associated with wastewater. While specialized tools for analysis of wastewater sequencing data have also been developed recently, it remains to be seen how they will perform given the ongoing evolution of SARS-CoV-2 and the decline in testing and patient-based genomic surveillance. Here, we discuss opportunities and challenges associated with WWGS, including sample preparation, sequencing technology, and bioinformatics methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods