Scenario-based Nonlinear Model Predictive Control for Building Heating Systems

3 Dec 2020  ·  Tomas Pippia, Jesus Lago, Roel De Coninck, Bart De Schutter ·

State-of-the-art Model Predictive Control (MPC) applications for building heating adopt either a deterministic controller together with a nonlinear model or a linearized model with a stochastic MPC controller. However, deterministic MPC only considers one single realization of the disturbances and its performance strongly depends on the quality of the forecast of the disturbances, which can lead to low performance. In fact, inadequate building energy management can lead to high energy costs and CO$_2$ emissions. On the other hand, a linearized model can fail to capture some dynamics and behavior of the building under control. In this article, we combine a stochastic scenario-based MPC (SBMPC) controller together with a nonlinear Modelica model that is able to provide a richer building description and to capture the dynamics of the building more accurately than linear models. The adopted SBMPC controller considers multiple realizations of the external disturbances obtained through a statistically accurate model, so as to consider different possible disturbance evolutions and to robustify the control action. To this purpose, we present a scenario generation method for building temperature control that can be applied to several exogenous perturbations, e.g.\ solar irradiance, outside temperature, and that satisfies several important stastistical properties, in contrast with simpler and less accurate methods adopted in the literature. We show the benefits of our proposed approach through several simulations in which we compare our method against the standard ones from the literature, for several combinations of a trade-off parameter between comfort and energy cost. We show how our SBMPC controller approach outperforms the standard controllers available in the literature.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here