Superpixel-enhanced Pairwise Conditional Random Field for Semantic Segmentation

29 May 2018  ·  Li Sulimowicz, Ishfaq Ahmad, Alexander Aved ·

Superpixel-based Higher-order Conditional Random Fields (CRFs) are effective in enforcing long-range consistency in pixel-wise labeling problems, such as semantic segmentation. However, their major short coming is considerably longer time to learn higher-order potentials and extra hyperparameters and/or weights compared with pairwise models. This paper proposes a superpixel-enhanced pairwise CRF framework that consists of the conventional pairwise as well as our proposed superpixel-enhanced pairwise (SP-Pairwise) potentials. SP-Pairwise potentials incorporate the superpixel-based higher-order cues by conditioning on a segment filtered image and share the same set of parameters as the conventional pairwise potentials. Therefore, the proposed superpixel-enhanced pairwise CRF has a lower time complexity in parameter learning and at the same time it outperforms higher-order CRF in terms of inference accuracy. Moreover, the new scheme takes advantage of the pre-trained pairwise models by reusing their parameters and/or weights, which provides a significant accuracy boost on the basis of CRF-RNN even without training. Experiments on MSRC-21 and PASCAL VOC 2012 dataset confirm the effectiveness of our method.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.