TF-Coder: Program Synthesis for Tensor Manipulations

The success and popularity of deep learning is on the rise, partially due to powerful deep learning frameworks such as TensorFlow and PyTorch that make it easier to develop deep learning models. However, these libraries also come with steep learning curves, since programming in these frameworks is quite different from traditional imperative programming with explicit loops and conditionals. In this work, we present a tool called TF-Coder for programming by example in TensorFlow. TF-Coder uses a bottom-up weighted enumerative search, with value-based pruning of equivalent expressions and flexible type- and value-based filtering to ensure that expressions adhere to various requirements imposed by the TensorFlow library. We train models to predict TensorFlow operations from features of the input and output tensors and natural language descriptions of tasks, to prioritize relevant operations during search. TF-Coder solves 63 of 70 real-world tasks within 5 minutes, sometimes finding simpler solutions in less time compared to experienced human programmers.

PDF Abstract NeurIPS Workshop 2020 PDF NeurIPS Workshop 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods