Thin-Film Lithium Niobate Acoustic Filter at 23.5 GHz with 2.38 dB IL and 18.2% FBW

This work reports an acoustic filter at 23.5 GHz with a low insertion loss (IL) of 2.38 dB and a 3-dB fractional bandwidth (FBW) of 18.2%, significantly surpassing the state-of-the-art. The device leverages electrically coupled acoustic resonators in 100 nm 128{\deg} Y-cut lithium niobate (LiNbO3) piezoelectric thin film, operating in the first-order antisymmetric (A1) mode. A new film stack, namely transferred thin-film LiNbO3 on silicon (Si) substrate with an intermediate amorphous silicon (a-Si) layer, facilitates the record-breaking performance at millimeter-wave (mmWave). The filter features a compact footprint of 0.56 mm2. In this letter, acoustic and EM consideration, along with material characterization with X-ray diffraction and verified with cross-sectional electron microscopy are reported. Upon further development, the reported filter platform can enable various front-end signal-processing functions at mmWave.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here